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Abstract. We compare the behaviour of ferromagnetic and antiferromagnetic Ising-type spin
models on the cubic pyrochlore lattice. With simple ‘up–down’ Ising spins, the antiferromagnet
is highly frustrated and the ferromagnet is not. However, such spin symmetry cannot be realized
on the pyrochlore lattice, since it requires a unique symmetry axis, which is incompatible with
the cubic symmetry. The only two-state spin symmetry whichis compatible is that with four
local 〈1 1 1〉 anisotropy axes, which direct the spins to point in or out of the tetrahedral plaquettes
of the pyrochlore lattice. We show how the local ‘in–out’ magnetic anisotropy reverses the roles
of the ferro- and antiferromagnetic exchange couplings with regard to frustration, such that the
ferromagnet is highly frustrated and the antiferromagnet is not. The in–out ferromagnet is a
magnetic analogue of the ice model, which we have termed the ‘spin ice model’. It is realized
in the material Ho2Ti2O7. The up–down antiferromagnet is also an analogue of the ice model,
albeit a less direct one, as originally shown by Anderson. Combining these results shows that the
up–down spin models map onto the in–out spin models with the opposite sign of the exchange
coupling. We present Monte Carlo simulations of the susceptibility for each model, and discuss
their relevance to experimental systems.

The pyrochlore lattice antiferromagnet is an enigmatic subject of current research [1]. Its
tetrahedral geometry leads to intense frustration of the magnetic bonds, and a number
of unusual effects which challenge our understanding of cooperative phenomena. Most
notably, many pyrochlore compounds show spin-glass transitions in the apparent absence of
chemical disorder. This is in direct contradiction to well established theory, and currently
has no accepted explanation. In contrast, the pyrochlore latticeferromagnetwould seem
at first sight unfrustrated and conventional. However, in a recent publication [2] we have
shown that the pyrochlore material Ho2Ti2O7 is geometically frustrated, even though the
coupling between the magnetic Ho3+ ions is ferromagnetic. In this letter we show, in
detail, how local magnetic anisotropy reverses the roles of the ferro- and antiferromagnetic
exchange couplings with regard to frustration, such that the ferromagnet is highly frustrated
and the antiferromagnet is not.

The pyrochlore lattice (figure 1) consists of a corner-linked array of tetrahedral
plaquettes. In figure 2 we show the ground states of a single tetrahedron of spins with various
combinations of exchange coupling and axial anisotropy. Ising spins on a single plaquette
are unfrustrated when the coupling is ferromagnetic (figure 2(a)), but fully frustrated when
the coupling is antiferromagnetic (figure 2(b)). Thus the ferromagnet has a phase transition
to a long-range ordered state at a temperatureT of the order of the exchange coupling
J , while the antiferromagnet has no phase transition down to absolute zero [3]. The
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Figure 1. The cubic pyrochlore lattice.

Figure 2. The ground states of a single tetrahedron of spins with various combinations of
exchange coupling (FM= ferromagnetic, AFM= antiferromagnetic) and uniaxial or〈1 1 1〉
Ising anisotropy. The ordering temperatures for each are shown in the inset boxes. Note that
only the uniaxial ferromagnet and〈1 1 1〉 antiferromagnet display transitions at finite temperature.

antiferromagnetic ground state of a single tetrahedron consists of two ‘up’ spins and two
‘down’ spins. There are an infinite number of ways in which such configurations can be
arranged on the lattice, and so the ground state manifold is said to be macroscopically
degenerate, with residual entropy atT = 0. Although Ising-like anisotropy is common in
nature, the uniaxial anisotropy assumed in figures 2(a) and (b) is unphysical as it requires
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a unique crystalline axis, which is not available in the cubic pyrochlore lattice. The only
Ising-like anisotropy consistent with this symmetry is that in which the easy axes point along
the cubic〈1 1 1〉-type directions into the centre of the tetrahedron. The antiferromagnetic
ground state is now unique, consisting of alternate tetrahedra with four spins ‘in’ or four
spins ‘out’ (figure 2(d)). This is the ordered spin structure observed in the pyrochlore
FeF3 [4]. The degeneracy is thus broken, and there is a phase transition into this state
at T ∼ J . However, with ferromagnetic coupling (figure 2(c)), the ground state of the
tetrahedron has two spins ‘in’ and two spins ‘out’. It is easily shown that these stack to
form a disordered, macroscopically degenerate ground state, and we have verified by Monte
Carlo simulation [5] that there is no ordering transition at any temperature. The pyrochlore
with ferromagnetic coupling and〈1 1 1〉 anisotropy is thus much more strongly frustrated
than the antiferromagnet with〈1 1 1〉 anisotropy. The ordering temperatures for each of the
four combinations of exchange coupling and anisotropy (henceforth referred to as models
(a)–(d)) are shown in figure 2.

A two-state antiferromagnetic model equivalent to model (b) was previously considered
by Anderson [6], who showed that it maps onto the cubic ice model. The essence of
Anderson’s mapping is that spin states represent proton positions; however, there is no
direct correspondence between spindirection and proton position. We show here that the
ferromagnetic model (c) also maps onto the ice model, but in this case thereis a direct
correspondence between spin direction and proton position. Our mapping is thus rather
more transparent than Anderson’s and for this reason it is convenient to describe it first.

To see how the mapping works, we observe, following Anderson, that the cubic
ice structure is generated by placing an oxygen atom at the centre of every elementary
pyrochlore lattice tetrahedron. The vertices of every tetrahedron on the pyrochlore lattice
lie at the mid-points of the oxygen–oxygen contacts. In the cubic ice structure, the hydrogen
atoms are displaced from these mid-points so that every hydrogen–oxygen bond forms both
a shorter covalent bond and a longer hydrogen bond with an oxygen. The displacement of
each hydrogen atom from the mid-point of the oxygen–oxygen contact may be represented
by an arrow, as shown in figure 3. The hydrogen ordering is then controlled by the Bernal–
Fowler ‘ice rules’, which require that two arrows point into, and two out of, each tetrahedron,
so that every oxygen atom has two adjacent hydrogens, forming a water molecule [7]. If
the arrows are replaced by spins, one obtains exactly the frustrated ferromagnetic model (c);
for simplicity we refer to this as ‘spin ice’. It is formally a non-trivial case of the 16-vertex

Figure 3. Local proton arrangement in ice, showing oxygen atoms (large white circles) and
hydrogen atoms (small black circles), and with the displacement of the hydrogen atoms from
the mid-points of the oxygen–oxygen bonds marked by arrows.
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model of statistical mechanics [8], and reduces to the ice model at zero temperature. The
ice model in three dimensions has a macroscopically degeneratedisorderedground state,
because the ice rules are insufficient to define long-range order (in the absence of an applied
electric field) [7]. The model has been solved exactly in two dimensions, as has a non-
trivial extension of it, the Baxter 8-vertex model, and these form two of the key exact
results discovered in statistical mechanics in recent years [9]. They are well known to
map onto ferromagnetic Ising models with 2- and 4-spin interactions; however these are
physically unrealistic. We believe that the spin ice model is the first vertex model to be
discovered that is physically realizable. One interesting feature of ice is that the hydrogen
atoms effectively freeze at low temperatures (due to the large energy barriers associated with
rearrangements), so that a disordered structure with very slow dynamics is formed. This is
to some extent reminiscent of a spin glass. We note, however, that there are sixfold rings in
the ice structure which allow hydrogen atoms to tunnel from one site to another in a closed
loop without any cost in energy, as long as they do so simultaneously. Since this process is
by necessity highly correlated and involves six atoms moving in concert, we imagine that
it may be rather unlikely in general, and the dynamics will be controlled by large energy
barriers. We note further that a similar argument will carry over to the pyrochlore lattice,
which also contains sixfold rings of spins which can flip with zero energy cost.

Combining our mapping of spin ice (figure 2(c)) onto the ice model, with Anderson’s
mapping of the ice model onto the Ising antiferromagnet (figure 2(b)), shows that spin ice
is effectively a realization of the latter. Anderson’s mapping exploits the fact that the oxide
lattice of cubic ice is bipartite, such that adjacent lattice sites belong to distinct but identical
Bravais sublattices. An up spin (for example) then represents ‘proton in’ on one sublattice,
and ‘proton out’ on the other; and vice-versa for a down spin. Thus, one finds that the
up-down spins of model (b) are equivalent to the in–out spins of model (c), so long as
the sign of the exchange coupling is reversed. There is obviously a similar correspondence
between model (a) and model (d).

In order to explore the consequences of these diagonal mappings, we show, in figure 4,

Figure 4. The inverse susceptibility, 1/χ , as a function of temperature for the four combinations
of exchange coupling and anisotropy shown in figure 2.
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the reciprocal susceptibility, 1/χ , versus temperatureT for each model, calculated by the
Monte Carlo method [5]. The susceptibility is defined asχ = (〈M2〉 − 〈M〉2)/T , where
M is the magnetization per spin, and in order that a meaningful comparison can be made,
the parametersJ and S have been chosen so that each model has the same Curie–Weiss
temperature and moment.

Referring to figure 4, a number of conclusions may be drawn. Firstly, the unfrustrated
models (a) and (d) show evidence of the expected phase transition atT/|J | = 4. Model (a)
shows behaviour typical of a conventional ferromagnet, in that the reciprocal susceptibility
deviates only slightly from linear Curie–Weiss behaviour, before approaching zero at a
finite temperature. The reciprocal susceptibility of the frustrated spin ice model, (c), in
contrast, deviates strongly from Curie–Weiss behaviour belowT/J = 10, and approaches
zero only atT = 0. The divergence of the susceptibility at this point is reminiscent of
the behaviour of a paramagnet, in that it reflects the presence of a significant number of
magnetized states in the degenerate ground state manifold. These magnetized states may
be selected by an applied field. Theq = 0 state is the state most strongly selected, and the
observation of such a field-induced ordering pattern in the material Ho2Ti2O7 constitutes the
main evidence that the latter material is a realization of spin ice [2]. Although one expects
equivalent thermodynamics from the frustrated antiferromagnet, model (b), in this case there
are no magnetized states in the ground state manifold, and consequently, the susceptibility
does not diverge. The reciprocal susceptibility curve of model (b) in fact shows a distinct
minimum atT/|J | ≈ 5 which corresponds to the settling of the spins into their local ground
states. The similarity of this feature to the ordering signatures of models (a) and (d) is most
surprising, and suggests the intriguing possibility that the disordered ground state of model
(b) may be accessed by a process which bears some similarity to a thermodynamic phase
transition.

The diagonal relationships between the four magnetic models of figure 2 are the main
result of this letter. They strictly apply to the case of two-state Ising-type spins, and are
thus relevant to experimental systems such as Ho2Ti2O7, in which the single-ion ground
state is a doublet [2]. The relationships do not apply directly to a more general Heisenberg
Hamiltonian with exchange couplingJ and anisotropyD, although Moessner [10] has
recently proposed that they should be regarded as the first term in a perturbation expansion
in the small parameter(J/D). Recent experimental work has highlighted the fact that
many oxide pyrochlores display spin glass transitions even when the level of defects is
immeasurably small [11]. This suggests that the spin freezing transition is a more universal
property of the pyrochlore Hamiltonian, rather than arising from a combination of frustration
and chemical disorder, as has long been thought [12]. Our results suggest that at least one
mechanism for spin freezing in pyrochlore magnets is the slow spin dynamics associated
with Ising anisotropy along the cubic〈1 1 1〉 axes. In the case of ferromagnetic coupling this
is clearly a fundamental property of the spin ice model, but we believe that these results also
carry over to the case of antiferromagnetic coupling. This is because of the large energy
barriers between ground states which occur in the〈1 1 1〉-axis Ising Hamiltonian, whatever
the sign of the exchange coupling.

We acknowledge the financial support of the EPSRC. We are grateful to J T Chalker,
P Chandra, M J P Gingras, P C W Holdsworth and R Moessner for helpful discussions.
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